
The Tutorial Book

Have fun with PIC microcontrollers, Jal v2 and Jallib

2008 2009 Jallib Group
Step by step tutorials, covering basic features of PIC

microcontrollers, using jalv2 compiler and jallib libraries. (version 0.2)

2 | Jallib Tutorials | Introduction

Jallib Tutorials | TOC | 3

Contents

Chapter 1: Back to basics..5
TODO: Introduction...7
Installation..8
Getting Started..10
Blink A Led (Your First Project)... 14
Setting up a serial link (UART) -- TODO..23

Chapter 2: PIC peripherals...25
Pulse Width Modulation (PWM)... 27

Having fun with PWM and a LED (part 1)..28
Having fun with PWM and a piezo buzzer (or a speaker) (part 2).. 33

Analog-to-Digital Converter (ADC) -- TODO.. 36
I²C...37

Building an i2c slave with jallib (part 1)..38
Building an i2c slave with jallib (part 2)..39
Building an i2c slave with jallib (part 3)..43

Chapter 3: Experimenting external parts..49
SD Memory Cards..51
Hard Disks - IDE/PATA.. 59
Interfacing a Sharp GP2D02 IR ranger.. 72
Interfacing a HD44780-compatible LCD display.. 79

License..87
Appendix..89

Materials, tools and other additional how-tos.. 90
Building a max232 circuit for serial port communication... 91
In Circuit Programming... 95

Changelog...98

4 | Jallib Tutorials | TOC

Chapter

1
Back to basics...

Topics:

• TODO: Introduction
• Installation
• Getting Started
• Blink A Led (Your First

Project)
• Setting up a serial link

(UART) -- TODO

This chapter is about exploring basic tutorials. As a beginner, these are the very first steps
you should experiment and fully understand before going further. As an advanced user,
these tutorials are also here to help you testing new chips, or... when things go wrong and
you can't figure out why, going back to basics

Don't worry, everything is gonna be alright...

6 | Jallib Tutorials | Back to basics...

Jallib Tutorials | Back to basics... | 7

TODO: Introduction

8 | Jallib Tutorials | Back to basics...

Installation

Jallib Group
Jallib Group

JALv2 & Jallib installation guide

Windows Install:

1. Download jalpack (installer executable) from http://jaledit.googlecode.com/files/JALPack_2.4_0.4_0.6.1.0.exe
2. Run the setup file
3. Run JalEdit.exe from the jaledit directory
4. (optional) Click Tools Menu -> Environment Options -> Programmer, Then Set the Programmer Executable Path

You should get something like this on windows:

Linux Install

1. Go to http://code.google.com/p/jallib/downloads/list, get the link location of the jallib-pack (.tar.gz file)
2. Go to the directory you wish to install JALv2
3. Download the package with: $ wget [link location of the jallib-pack] or simply use your

favorite browser to download archive in the appropriate directory.
4. unzip the package with: $ tar xzf [filename.tar.gz]

Note: Jaledit runs under Wine on Linux

You should get something like this on linux:

http://jaledit.googlecode.com/files/JALPack_2.4_0.4_0.6.1.0.exe
http://code.google.com/p/jallib/downloads/list

Jallib Tutorials | Back to basics... | 9

10 | Jallib Tutorials | Back to basics...

Getting Started

Matthew Schinkel
Jallib Group

Guide to getting started with PIC microcontrollers JALv2 & Jallib

So, you’ve heard all the hype about PIC microcontrollers & JALv2 and want to hear more?

Let’s start with some questions you may have.

Why use PIC microcontrollers, JALv2, and this book?

Simple usage:

Yes, that’s right, microcontrollers are simple to use with the help of this open source language JAL. Not only are
microcontrollers simple to use, but many other complex external hardware is made easy such as: USB, Analog to
digital conversion (ADC), serial communication, Hard Disks, SD Cards, LCD displays, sensors and many more.

All you will need is a small amount of knowledge about general electronics. We will teach you the rest you need to
know!

Circuit Simplicity:

Would you like to reduce the size of your circuits? What are you currently using to build your digital circuits?

When I got started, I liked to use things like the 74LS series, simple CMOS gate chips, 555 timers etc. You can
build just about anything with these simple chips, but how many will you need to complete your project? One of
the projects I built some time ago used five 74ls chips. With a microcontroller, I can now reduce my circuit to 1
microcontroller.

Bigger Projects:

When I say bigger, I mean cooler projects! There is no limit to what you can build! Choose from our small projects to
build a large project of your own. What functionality do you need for your project? Check out our tutorial section for
a complete list of compatible features you can use for your circuit.

Jallib Tutorials | Back to basics... | 11

What do I need to get started?

You will need the following:

1. PIC microcontroller chip
2. PIC programmer
3. Programming language (JALv2) + Libraries (JALLIB) + Editor, see our installation guide.
4. Computer (preferably one with a serial port)
5. PIC programming / burning software
6. Regular electronic stuff such as breadboard, resistors, wire, multimeter etc.
7. Oscilloscope is not required but suggested for some advanced projects.

Follow our Installation Guide for free programming language, libraries & text editor

How much will it cost?

Yes, getting started with microcontrollers has it’s price. A microcontroller can cost you anywhere between $1 to $10
USD, and a programmer will cost $20 to $50. But you can't put a price on FUN!

The programming language JALv2 is FREE, other languages will cost you somewhere between $200 and $2000.

When you compare this price to the price you are currently spending on those many IC’s you currently require to
build your circuits, this may be cheaper. You will not need many of your smaller IC’s, and some specialty chips can
be replaced. Of course you’re going to save time and breadboard space as well!

As an example... Instead of buying a UART chip for serial communication, you can now use the microcontroller’s
internal UART for communication to your PC or other projects.

What PIC microcontroller should I buy?

PIC16F877 or PIC16F877A seem to be the most popular mid-range PIC at the moment (in the image above). You
should be able to find them at your local electronics store for around $10. This microcontroller has many features and
a good amount of memory. It will be sufficient for most of your projects. We will build our first project on this chip.

There are many low-end PIC’s to choose from, PIC16F84, PIC16F88 are smaller chips for around $5. There are also
very low end 8 pin PIC’s such as 12F675 for $1.

If you’re looking for speed, functionality, and a whole lot of memory space, you can go with a PIC18Fxxx chip.
Some of these have USB capability. I would suggest one of the following: 18F452, 18F4550, 18F2550. These PIC’s
will also work in our getting started “blink a led” tutorial with the same circuit diagram. For future tutorials, the
circuits may need some modifications.

Here’s a price chart from the manufacturer’s sales website:

PIC Price USD

16F877 $5.92

16F877A $5.20

18F4550 $4.47

16F84 $5.01

12F675 $1.83

12 | Jallib Tutorials | Back to basics...

PIC Price USD

18F452 $1.01

18F4550 $4.14

18F4550 $4.47

18F2550 $4.51

What programmer should I buy?

Any pic programmer will do. The only suggestions I have is to make sure it can program a wide variety of PIC’s such
as the ones listed above, and make sure it has a ICSP port for future use. ICSP is for in-circuit programming.

Here are some images of programmers we use:

What editor should I use?

Any text editor is fine, but if you are on a windows machine. We suggest the free editor “JAL Edit” which
will highlight & color important text as well as compile your JAL program to a hex file for burning to your
microcontroller. If you followed our installation guide, you will already have this editor.

Jallib Tutorials | Back to basics... | 13

What programming/burning software should I use?

Did your programmer come with software? There are many to choose from so use whatever you prefer. I use
“Micropro” from http://www.ozitronics.com/micropro.html. It’s a free, open source software for programming a wide
range of PIC’s. It supports many types of programmers.

OK, enough of this boring stuff, lets build something! Start with the Blink A Led Tutorial.

http://www.ozitronics.com/micropro.html

14 | Jallib Tutorials | Back to basics...

Blink A Led (Your First Project)

Matthew Schinkel
Jallib Group

In this tutorial we are going to learn how to connect our first circuit and blink our first led.

Where to we start?

Let’s make a led blink on and off, how fun is that!

So, you’ve followed the installation guide and now have a Programming language (JALv2) + Libraries (JALLIB) +
Editor. We will be using JALEdIt for our first example.

Setup your workspace

Start by getting out your programmer and connect it to your PC. Some connect by serial port, some connect via USB.
I actually use a serial port programmer attached to a USB-to-Serial adapter to free up my serial port for other projects.

If you are using a serial port programmer you need to check that you have a regular serial cable and is not a null
modem cable. Using your multimeter, check that each pin of your serial cable matches, if pins 7 & 8 are crossed, it is
a null modem cable.

Get out your PIC microcontroller (we will now refer to it as a PIC). You can use PIC’s 16f877, 16f877A, 18F2550 ,
18F452 or 18F4550 for this project since the port pin outs are the same for all of them. I will use 16f877A for this
blink a led project.

Now check PC connectivity to your programmer. Open your programming software on your PC, check the settings
within your software to change the serial port number and programmer type (if available). Your programmer software
may tell you that your board is connected, if not, put your PIC in your programmer and do some basic tests such as
“read chip”, “blank / erase chip”

Jallib Tutorials | Back to basics... | 15

If you are using Micropro, click on “file” -> “port”, and “file” -> “programmer” -> (your programmer type). If you
do not know the programmer type, you will have to guess until Micropro says something like “K149-BC board
connected”, Put your PIC in your programmer and choose your PIC type from the “Chip Selector” text box. Now do
some basic read/erase tests.

Build your circuit

Well, it looks like we’re all set to go, so grab your breadboard and other components, put together the following
circuit:

16 | Jallib Tutorials | Back to basics...

And here’s what it looks like. Notice the additional orange wire to the left of my PIC, this ensures that I always put
my PIC in the correct position after programming. Do not connect your power 5v supply till your circuit is complete
and checked over at least twice. You will burn your PIC if power is on while building your circuit. You will want an
on/off switch for your power supply.

Jallib Tutorials | Back to basics... | 17

Your circuit is done, and it looks pretty, but it doesn’t do anything :o(..

Understand the jalv2 directory structure

First take a look at your jalv2 installation directory on your PC, wherever you installed it.

compiler – holds the jalv2.exe compiler program to convert your JAL code to microcontroller hex code

18 | Jallib Tutorials | Back to basics...

JALEdIt – JAL text editor where you will write your code

lib – A set of libraries to make things work

sample – Working examples.

Create yourself a folder called workspace, and in that folder create a folder called blink_a_led (eg. C:
\jalv2\workspace\blink_a_led\)

Setup your editor & .jal file

Open up your favorite text editor. I will use JALEdIt. Run jaledit.exe from the JALEdIt directory. Start a new
document, and save it in jalv2\workspace\blink_a_led\ and name it blink_a_led.jal (eg: C:\jalv2\workspace
\blink_a_led\blink_a_led.jal)

Let’s write some code

So now we’re going to write the code that will make our led blink. All code will be in highlighted text. You can read
more about JAL language usage here: http://www.casadeyork.com/jalv2/language.html

Title & Author Block

Start out by writing a nice title block so everyone know’s who created it. Here’s an example Title block from Rob
Hamerling’s working 16f877a_blink.jal blink a led example in the sample directory. Every PIC has at least one
working sample. You can see that two dashes “-“ declare a comment so your notes get ignored by the compiler. The
character “;” can also be used for comments. We will comment our code as we go along so it is easier for us to read
our own code.

-- --
-- Title: Blink-a-led of the Microchip pic16f877a
--
-- Author: Rob Hamerling, Copyright (c) 2008..2009, all rights reserved.
--
-- Adapted-by:
--
-- Compiler: 2.4l
--
-- This file is part of jallib (http://jallib.googlecode.com)
-- Released under the BSD license (http://www.opensource.org/licenses/bsd-
license.php)
--
-- Description:
-- Sample blink-a-led program for Microchip PIC16f877a.
--
-- Sources:
--
-- Notes:
-- - File creation date/time: 14 Oct 2009 20:24:20.
--
-- --

Choose your PIC

Write the following code to choose the PIC you are using, change 16f877a to whatever PIC you have:

include 16f877a -- target PICmicro

http://www.casadeyork.com/jalv2/language.html

Jallib Tutorials | Back to basics... | 19

Choose your crystal speed

Write the following code according to the speed of the crystal you are using in your circuit. I suggest 20mhz for
16f877. You can check your chip’s datasheet for it’s max speed. Higher speeds may not work the way you want them
to on a temporary breadboard.

-- This program assumes a 20 MHz resonator or crystal
-- is connected to pins OSC1 and OSC2.
pragma target clock 20_000_000 -- oscillator frequency

Configure PIC Settings

The following code sets some of the PIC’s internal settings, called fuses. A OSC setting of HS tells the PIC there is an
external clock or crystal oscillator source. You must disable analog pins with enable_digital_io() , you don’t need to
worry about the others.

-- configuration memory settings (fuses)
pragma target OSC HS -- HS crystal or resonator
pragma target WDT disabled -- no watchdog
pragma target LVP disabled -- no Low Voltage Programming
--
enable_digital_io() -- disable analog I/O (if any)
--

Choose an output pin

Let’s choose an output pin to control our led. As you can see from the circuit, our led is connected to pin #2. Let’s
check our datasheet to find the pin name from the pin out diagram.

The PDF datasheet for this PIC and for all others can be downloaded from the microchip website. Here is the
datasheet for this PIC http://ww1.microchip.com/downloads/en/DeviceDoc/30292c.pdf , and here is the pin out
diagram from the datasheet:

http://ww1.microchip.com/downloads/en/DeviceDoc/30292c.pdf

20 | Jallib Tutorials | Back to basics...

As you can see, we are using the pin RA0/ANO at pin #2. RA0 is the pin name we are looking for. AN0 is another
name for this same pin (used in the analog to digital tutorial), but we can ignore it in this tutorial. In the JAL language
RA0 is written as pin_A0

Now let’s read the details of this pin in the datasheet on page 10. As you can see RA0 is a TTL Digital I/O pin. We
are checking this to make sure it is not a open drain output. Open drain outputs (like pin RA4) require a pull-up
resistor from the pin to V+

Now write code for pin A0. We are writing an “alias” only because in the future we can refer to pin 2 (A0) as “led”.
This way we no longer need to remember the name of the pin (except for the directional register in the next line of
code we will write).

--
-- You may want to change the selected pin:
alias led is pin_A0

Configure the pin as an input or output

Now we must tell the PIC if this is an input or an output pin. The directional setting is always named (pin_ +
pinname_ + direction). Since we are writing data to the port, to turn the led on, it is an output.

pin_A0_direction = output

We could make an alias for this as well: “alias led_direction is pin_A0_direction”, then write “led_direction =
output”. This way, we can change it from output to input in the middle of the program without knowing the pin name.
But in this case, we will only use pin_A0_direction once in our program so there is no need to make an alias.

Write your program

So, now that we have the led under our control, let’s tell it what to do.

We will want our led to continue doing whatever we want it to do forever, so we’ll make a loop

forever loop

It is good practice to indent before each line within the loop for readability. 3 spaces before each line is the standard
for Jallib.

Jallib Tutorials | Back to basics... | 21

In this loop, we will tell the led to turn on.

 led = ON

now have some delay (250ms) a quarter of a second so we can see the led on.

 _usec_delay(250000)

turn the led off again

 led = OFF

and have another delay before turning it back on again

 _usec_delay(250000)

close our loop, when the PIC gets to this location, it will go back to the beginning of the loop

end loop
--

And that’s it for our code. Save your file, It should look something like this:

-- --
-- Title: Blink-a-led of the Microchip pic16f877a
--
-- Author: Rob Hamerling, Copyright (c) 2008..2009, all rights reserved.
--
-- Adapted-by:
--
-- Compiler: 2.4l
--
-- This file is part of jallib (http://jallib.googlecode.com)
-- Released under the BSD license (http://www.opensource.org/licenses/bsd-
license.php)
--
-- Description:
-- Sample blink-a-led program for Microchip PIC16f877a.
--
-- Sources:
--
-- Notes:
-- - File creation date/time: 14 Oct 2009 20:24:20.
--
-- --
--
include 16f877a -- target PICmicro
--
-- This program assumes a 20 MHz resonator or crystal
-- is connected to pins OSC1 and OSC2.
pragma target clock 20_000_000 -- oscillator frequency
-- configuration memory settings (fuses)
pragma target OSC HS -- HS crystal or resonator
pragma target WDT disabled -- no watchdog
pragma target LVP disabled -- no Low Voltage Programming
--
enable_digital_io() -- disable analog I/O (if any)
--
-- You may want to change the selected pin:
alias led is pin_A0
pin_A0_direction = output
--
forever loop
 led = on
 _usec_delay(250000)
 led = off
 _usec_delay(250000)

22 | Jallib Tutorials | Back to basics...

end loop
--

Compile your code to .hex

Now let’s get this beautiful code onto our PIC. Your PIC cannot understand JAL, but it does understand hex, this is
what the compiler is for. The compiler takes people readable code and converts it to code your PIC can understand.

If you are using JALEdIt, click the compile menu at the top and choose compile.

If you are using your own text editor in windows, you will need to open windows command prompt. Click start -> run
and type cmd and press OK. Now type (path to compiler) + (path to your .jal file) + (-s) + (path to JALLIB libraries)
+ (options) Here’s an example:

C:\jalv2\compiler\jalv2.exe "C:\jalv2\workspace\blink_a_led\blink_a_led.jal" -s "C:\jalv2\lib" -no-variable-reuse

The option -no-variable-reuse will use more PIC memory, but will compile faster.

If all this went ok, you will now have a blink_a_led.hex located in the same directory as your blink_a_led.jal, If there
where errors or warnings, the compiler will tell you.

A error means the code has an problem and could not generate any .hex file. If there is a warning, the hex file was
generated ok and may run on your PIC but the code should be fixed.

Write the hex file to your PIC

Take your PIC out of your circuit and put it in your programmer. With your programming software, open the
blink_a_led.hex file. You should see that hex data loaded in your software. Now click the Write button. Your
software will tell you when it is done.

Let's Try It

Put your PIC back into your circuit, double check your circuit if you haven’t already, and make sure your PIC is
facing the correct direction. Apply power to your circuit.

It’s alive! You should see your led blinking! Congratulations on your first JALv2 + JALLIB circuit!

Here's a youtube video of the result: http://www.youtube.com/watch?v=PYuPZO7isoo

http://www.youtube.com/watch?v=PYuPZO7isoo

Jallib Tutorials | Back to basics... | 23

Setting up a serial link (UART) -- TODO

24 | Jallib Tutorials | Back to basics...

Chapter

2
PIC peripherals

Topics:

• Pulse Width Modulation
(PWM)

• Analog-to-Digital
Converter (ADC) --
TODO

• I²C

This chapter covers main and widely used PIC microcontroller peripherals, like PWM,
ADC, etc... For each section, you'll find some basic theory explaining how things works,
then a real-life example.

26 | Jallib Tutorials | PIC peripherals

Jallib Tutorials | PIC peripherals | 27

Pulse Width Modulation (PWM)

28 | Jallib Tutorials | PIC peripherals

Having fun with PWM and a LED (part 1)

Sébastien Lelong
Jallib Group

Pulse Width ModulationIn this "Step-by-Step" tutorial, we're going to (try to) have some fun with PWM. PWM stands
for , and is quite weird when you first face this (this was at least my first feeling).

So, how does PWM look like ?...

PWM is about switching one pin (or more) high and low, at different frequencies and duty cycles. This is a on/off
process. You can either vary:
• the frequency,
• or the duty cycle, that is the proportion where the pin will be high

Both have a 50% duty cycle (50% on, 50% off), but the upper one's frequency is twice the bottom

Figure 1: PWM: same duty cycle, different frequencies.

Three different duty cycle (10%, 50% and 90%), all at the same frequency

Figure 2: PWM: same frequency, different duty cycles

But what is PWM for ? What can we do with it ? Many things, like:

http://en.wikipedia.org/wiki/PWM

Jallib Tutorials | PIC peripherals | 29

• producing variable voltage (to control DC motor speed, for instance)
• playing sounds: duty cycle is constant, frequency is variable
• playing PCM wave file (PCM is Pulse Code Modulation)
• ...

One PWM channel + one LED = fun

For now, and for this first part, we're going to see how to control the brightness of a LED. If simply connected to a
pin, it will light at its max brightness, because the pin is "just" high (5V).

Now, if we connect this LED on a PWM pin, maybe we'll be able to control the brightness: as previously said,
PWM can be used to produce variable voltages. If we provide half the value (2.5V), maybe the LED will be half its
brightness (though I guess the relation between voltage and brightness is not linear...). Half the value of 5V. How to
do this ? Simply configure the duty cycle to be 50% high, 50% low.

But we also said PWM is just about switching a pin on/off. That is, either the pin will be 0V, or 5V. So how will we
be able to produce 2.5V ? Technically speaking, we won't be able to produce a real 2.5V, but if PWM frequency is
high enough, then, on the average, and from the LED's context, it's as though the pin outputs 2.5V.

Building the whole

Enough theory, let's get our hands dirty. Connecting a LED to a PWM pin on a 16f88 is quite easy. This PIC has quite
a nice feature about PWM, it's possible to select which pin, between RB0 and RB3, will carry the PWM signals. Since
I use tinybootloader to upload my programs, and since tiny's fuses are configured to select the RB0 pin, I'll keep using
this one (if you wonder why tinybootloader interferes here, read this post).

Figure 3: Connecting a LED to a PWM pin

On a breadboard, this looks like this:

http://www.etc.ugal.ro/cchiculita/software/picbootloader.htm
http://jallib.blogspot.com/2009/01/common-pitfall-setting-up-registers.html

30 | Jallib Tutorials | PIC peripherals

The connector brings +5V on the two bottom lines (+5V on line A, ground on line B).

LED is connected to RB0

Writing the software

For this example, I took one of the 16f88's sample included in jallib distribution (16f88_pwm_led.jal), and just adapt
it so it runs at 8MHz, using internal clock. It also select RB0 as the PWM pin.

http://code.google.com/p/jallib/source/browse/trunk/sample/by_device/16f88/16f88_pwm_led.jal

Jallib Tutorials | PIC peripherals | 31

So, step by step... First, as we said, we must select which pin will carry the PWM signals...

pragma target CCP1MUX RB0 -- ccp1 pin on B0

and configure it as output

var volatile bit pin_ccp1_direction is pin_b0_direction
pin_ccp1_direction = output
-- (simply "pin_b0_direction = output" would do the trick too)

Then we include the PWM library.

include pwm_hardware

Few words here... This library is able to handle up to 10 PWM channels (PIC using CCP1, CCP2, CCP3, CCP4, ...
CCP10 registers). Using conditional compilation, it automatically selects the appropriate underlying PWM
libraries, for the selected target PIC.

Since 16f88 has only one PWM channel, it just includes "pwm_ccp1" library. If we'd used a 16f877, which has two
PWM channels, it would include "pwm_ccp1" and "pwm_ccp2" libraries. What is important is it's transparent to
users (you).

OK, let's continue. We now need to configure the resolution. What's the resolution ? Given a frequency, the number
of values you can have for the duty cycle can vary (you could have, say, 100 different values at one frequency, and
255 at another frequency). Have a look at the datasheet for more.

What we want here is to have the max number of values we can for the duty cycle, so we can select the exact
brightness we want. We also want to have the max frequency we can have (ie. no pre-scaler).

pwm_max_resolution(1)

If you read the jalapi documentation for this, you'll see that the frequency will be 7.81kHz (we run at 8MHz).

PWM channels can be turned on/off independently, now we want to activate our channel:

pwm1_on()

Before we dive into the forever loop, I forgot to mention PWM can be used in low or high resolution. On low
resolution, duty cycles values range from 0 to 255 (8 bits). On high resolution, values range from 0 to 1024 (10
bits). In this example, we'll use low resolution PWM. For high resolution, you can have a look at the other sample,
16f88_pwm_led_highres.jal. As you'll see, there are very few differences.

Now let's dive into the loop...

forever loop
 var byte i
 i = 0
 -- loop up and down, to produce different duty cycle
 while i < 250 loop
 pwm1_set_dutycycle(i)
 _usec_delay(10000)
 i = i + 1
 end loop
 while i > 0 loop
 pwm1_set_dutycycle(i)
 _usec_delay(10000)
 i = i - 1
 end loop
 -- turning off, the LED lights at max.
 _usec_delay(500000)
 pwm1_off()
 _usec_delay(500000)
 pwm1_on()

end loop

http://jallib.googlecode.com/svn/trunk/doc/html/pwm_common.html
http://code.google.com/p/jallib/source/browse/trunk/sample/by_device/16f88/16f88_pwm_led_highres.jal

32 | Jallib Tutorials | PIC peripherals

Quite easy right ? There are two main waves: one will light up the LED progressively (0 to 250), another will turn
it off progressively (250 to 0). On each value, we set the duty cycle with pwm1_set_dutycycle(i) and wait a
little so we, humans, can see the result.

About the result, how does this look like ? See this video: http://www.youtube.com/watch?v=r9_TfEmUSf0

"I wanna try, where are the files ?"

To run this sample, you'll need the last jallib pack (at least 0.2 version). You'll also find the exact code we used here.

http://www.youtube.com/watch?v=r9_TfEmUSf0
http://code.google.com/p/jallib/downloads/list
http://code.google.com/p/jallib/source/browse/trunk/doc/dita/tutorials/code/blog_16f88_board_sl_pwm_led.jal

Jallib Tutorials | PIC peripherals | 33

Having fun with PWM and a piezo buzzer (or a speaker) (part 2)

Sébastien Lelong
Jallib Group

In previous tutorial, we had fun by controlling the brightness of a LED, using PWM. This time, we're going to have
even more fun with a piezo buzzer, or a small speaker.

If you remember, with PWM, you can either vary the duty cycle or the frequency. Controlling the brightness of a
LED, ie. produce a variable voltage on the average, can be done by having a constant frequency (high enough) and
vary the duty cycle. This time, this will be the opposite: we'll have a constant duty cycle, and vary the frequency.

What is a piezo buzzer ?

It's a "component" with a material having piezoelectric ability. Piezoelectricity is the ability for a material to produce
voltage when it get distorted. The reverse is also true: when you produce a voltage, the material gets distorted. When
you stop producing a voltage, it gets back to its original shape. If you're fast enough with this on/off voltage setting,
then the piezo will start to oscillate, and will produce sound. How sweet...

Constant duty cycle ? Why ?

So we now know why we need to vary the frequency. This will make the piezo oscillates more and less, and produces
sounds at different levels. If you produce a 440Hz frequency, you'll get a nice A3.

But why having a constant duty cycle ? What is the role of the duty cycle in this case ? Remember: when making a
piezo oscillate, it's not the amount of volts which is important, it's how you turn the voltage on/off1:

• when setting the duty cycle to 10%: during a period, piezo will get distorted 10% on the time, and remain
inactive 90% on the time. The oscillation proportion is low.

• when setting the duty cycle to 50%: the piezo is half distorted, half inactive. The oscillation proportion is high,
because the piezo oscillates at the its maximal amplitude, it's half and equally distorted and inactive.

• when setting the duty cycle to 90%: the piezo will get distorted during 90% of a period, then nothing. The
oscillation proportion is low again, because the proportion between distortion and inactivity is not equal.

So, to summary, what is the purpose of the duty cycle in our case ? The volume ! You can vary the volume of the
sound by modifying the duty cycle. 0% will produce no sounds, 50% will be the max volume. Between 50% and
100% is the same as between 0% and 50%. So, when I say when need a constant duty cycle, it's not that true, it's just
that we'll set it at 50%, so the chances we hear something are high :)

Let's produce sounds !

The schematics will use is exactly the same as on the previous post with the LED, except the LED is replaced with a
piezo buzzer, like this:

1 I guess this is about energy or something like that. One guru could explain the maths here...

http://en.wikipedia.org/wiki/Piezoelectricity
http://en.wikipedia.org/wiki/A440

34 | Jallib Tutorials | PIC peripherals

By the way, how to observe the "duty cycle effect" on the volume ? Just program your PIC with the previous
experiment one, which control the brightness of a LED, and power on the circuit. I wanted to show a video with
sounds, but the frequency is too high, my camera can't record it...

Anyway, that's a little bit boring, we do want sounds...

Writing the software

The software part has a lot of similarities with the previous experiment. The initialization is the same, I let you have a
look. Only the forever loop has changed:

var dword counter = 0
forever loop

Jallib Tutorials | PIC peripherals | 35

 for 100_000 using counter loop
 pwm_set_frequency(counter)
 -- Setting @50% gives max volume
 -- must be re-computed each time the frequency
 -- changes, because it depends on PR2 value
 pwm1_set_percent_dutycycle(50)
 end loop

end loop

Quite straightforward:

• we "explore" frequencies between 0 and 100 000 Hz, using a counter
• we use pwm_set_frequency(counter) to set the frequency, in Hertz. It takes a dword as parameter (ie.

you can explore a lot of frequencies...)
• finally, as we want a 50% duty cycle, and since its value is different for each frequency setting, we need to re-

compute it on each loop.

Note: jallib's PWM libraries are coming from a "heavy refactoring" of Guru Stef Mientki's PWM library.
While integrating it to jallib, we've modified the library so frequencies can be set and changed during
program execution. This wasn't the case before, because the frequency was set as a constant.

So, how does this look like ? Hope you'll like the sweet melody :)

http://www.youtube.com/watch?v=xZ9OhQUKGtQ

"Where can I download the files ?"

As usual, you'll need the last jallib pack (at least 0.2 version). You'll also find the exact code we used here.

http://www.youtube.com/watch?v=xZ9OhQUKGtQ
http://code.google.com/p/jallib/downloads/list
http://code.google.com/p/jallib/source/browse/trunk/doc/dita/tutorials/code/blog_16f88_pwm_sound.jal

36 | Jallib Tutorials | PIC peripherals

Analog-to-Digital Converter (ADC) -- TODO

Jallib Tutorials | PIC peripherals | 37

I²C

38 | Jallib Tutorials | PIC peripherals

Building an i2c slave with jallib (part 1)

Sébastien Lelong
Jallib Group

i2c is a nice protocol: it is quite fast, reliable, and most importantly, it's addressable. This means that on a single 2-
wire bus, you'll be able to plug up to 128 devices using 7bits addresses, and even 1024 using 10bits address. Far
enough for most usage... I won't cover i2c in depth, as there are plenty resources on the Web (and I personally like
this page).

A few words before getting our hands dirty...

i2c is found in many chips and many modules. Most of the time, you create a master, like when accessing an
EEPROM chip. This time, in this three parts tutorial, we're going to build a slave, which will thus respond to master's
requests.

The slave side is somewhat more difficult (as you may have guess from the name...) because, as it does not initiate the
talk, it has to listen to "events", and be as responsive as possible. You've guessed, we'll use interrupts. I'll only cover
i2c hardware slave, that is using SSP peripheral2. Implementing an i2c software slave may be very difficult (and I
even wonder if it's reasonable...).

There are different way implementing an i2c slave, but one seems to be quite common: defining a finite state
machine. This implementation is well described in Microchip AppNote AN734. It is highly recommended that you
read this appnote, and the i2c sections of your favorite PIC datasheet as well (I swear it's quite easy to read, and well
explained).

Basically, during an i2c communication, there can be 5 distinct states:

1. Master writes, and last byte was an address: to sum up, master wants to talk to a specific slave, identified by
the address, it wants to send data (write)

2. Master writes, and last byte was data: this time, master sends data to the slave
3. Master read, and last byte was an address: almost the same as 1., but this time, master wants to read something

from the salve
4. Master read, and last byte was data: just the continuation of state 3., master has started to read data, and still

wants to read more data
5. Master sends a NACK: basically, master doesn't want to talk to the slave anymore, it hangs up...

Note: in the i2c protocol, one slave has actually two distinct addresses. One is for read operations, and it
ends with bit 1. Another is for write operations, and it ends with bit 0.

Example: consider the following address (8-bits long, last bit is for operation type)

0x5C => 0b_0101_1100 => write operation

The same address for read operation will be:

0x93 => 0b_0101_1101 => read operation

Note: jallib currently supports up to 128 devices on a i2c bus, using 7-bits long addresses (without the
8th R/W bits). There's currently no support for 10-bits addresses, which would give 1024 devices on the
same bus. If you need it, please let us know, we'll modify libraries as needed !

OK, enough for today. Next time, we'll see how two PICs must be connected for i2c communication, and we'll check
the i2c bus is fully working, before diving into the implementation.

2 some PICs have MSSP, this means they can also be used as i2c hardware Master

http://en.wikipedia.org/wiki/I2c
http://www.google.com/search?q=i2c
http://www.esacademy.com/faq/i2c/index.htm
http://en.wikipedia.org/wiki/Finite_state_machine
http://en.wikipedia.org/wiki/Finite_state_machine
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en011798

Jallib Tutorials | PIC peripherals | 39

Building an i2c slave with jallib (part 2)

Sébastien Lelong
Jallib Group

In previous tutorial, we saw a basic overview of how to implement an i2c slave, using a finite state machine
implementation. Today, we're going to get our hands a little dirty, and starts connecting our master/slave together.

Checking the hardware and the i2c bus...

First of all, i2c is quite hard to debug, especially if you don't own an oscilloscope (like me). So you have to be
accurate and rigorous. That's why, in this second part of this tutorial, we're going to setup the hardware, and just make
sure the i2c bus is properly operational.

Connecting two PIC together through i2c is quite easy from a hardware point of view. Just connect SDA and SCL
together, and don't forget pull-ups resistors. There are many differents values for these resistors, depending on how
long the bus is, or the speed you want to reach. Most people use 2.2K resistors, so let's do the same ! The following
schematics is here to help:

In this circuit, both PIC have a LED connected, which will help us understand what's going on. On a breadboard, this
looks like that:

40 | Jallib Tutorials | PIC peripherals

The master is on the right side, the slave on the left. I've put the two pull-ups resistors near the master:

Jallib Tutorials | PIC peripherals | 41

Green and orange wires connect the two PICs together:

The goal of this test is simple: check if the i2c bus is properly built and operational. How ? PIC 16F88 and its SSP
peripheral is able to be configured so it triggers an interrupts when a Start or Stop signal is detected. Read this page
(part of an nice article on i2c, from last post's recommandations).

How are we gonna test this ? The idea of this test is simple:

1. On power, master will blink a LED a little, just to inform you it's alive
2. On the same time, slave is doing the same
3. Once master has done blinking, it sends a i2c frame through the bus
4. If the bus is properly built and configured, slave will infinitely blink its LED, at high speed

Note master will send its i2c frame to a specific address, which don't necessarily need to be the same as the slave one
(and I recommand to use different addresses, just to make sure you understand what's going on).

What about the sources ? Download last jallib pack, and check the following files (either in lib or sample
directories):

• i2c_hw_slave.jal: main i2c library
• 16f88_i2c_sw_master_check_bus.jal: code for master
• 16f88_i2c_hw_slave_check_bus.jal: code for slave

The main part of the slave code is the way the initialization is done. A constant is declared, telling the library to
enable Start/Stop interrupts.

const SLAVE_ADDRESS = 0x23 -- whatever, it's not important, and can be
 -- different from the address the master wants
 -- to talk to
-- with Start/Stop interrupts
const bit i2c_enable_start_stop_interrupts = true
-- this init automatically sets global/peripherals interrupts
i2c_hw_slave_init(SLAVE_ADDRESS)

http://www.esacademy.com/faq/i2c/busevents/i2cstast.htm
http://code.google.com/p/jallib/downloads/list
http://jallib.googlecode.com/svn/trunk/include/peripheral/i2c/i2c_hw_slave.jal
http://jallib.googlecode.com/svn/trunk/sample/16f88_i2c_sw_master_check_bus.jal
http://jallib.googlecode.com/svn/trunk/sample/16f88_i2c_hw_slave_check_bus.jal

42 | Jallib Tutorials | PIC peripherals

And, of course, the Interrupt Service Routine (ISR):

procedure i2c_isr() is
 pragma interrupt
 if ! PIR1_SSPIF then
 return
 end if
 -- reset flag
 PIR1_SSPIF = false
 -- tmp store SSPSTAT
 var byte tmpstat
 tmpstat = SSPSTAT
 -- check start signals
 if (tmpstat == 0b_1000) then
 -- If we get there, this means this is an SSP/I2C interrupts
 -- and this means i2c bus is properly operational !!!
 while true loop
 led = on
 _usec_delay(100000)
 led = off
 _usec_delay(100000)
 end loop
 end if
end procedure

The important thing is to:

• check if interrupt is currently a SSP interrupts (I2C)
• reset the interrupt flag,
• analyze SSPSTAT to see if Start bit is detected
• if so, blinks 'til the end of time (or your battery)

Now, go compile both samples, and program two PICs with them. With a correct i2c bus setting, you should see the
following:

http://www.youtube.com/watch?v=NalAkRhFP-s

On this next video, I've removed the pull-ups resistors, and it doesn't work anymore (slave doesn't high speed blink its
LED).

http://www.youtube.com/watch?v=cNK_cCgWctY

Next time (and last time on this topic), we'll see how to implement the state machine using jallib, defining callback
for each states.

http://www.youtube.com/watch?v=NalAkRhFP-s
http://www.youtube.com/watch?v=cNK_cCgWctY

Jallib Tutorials | PIC peripherals | 43

Building an i2c slave with jallib (part 3)

Sébastien Lelong
Jallib Group

In previous parts of this tutorial, we've seen a little of theory, we've also seen how to check if the i2c bus is
operational, now the time has come to finally build our i2c slave. But what will slave will do ? For this example, slave
is going to do something amazing: it'll echo received chars. Oh, I'm thinking about something more exciting: it will
"almost" echo chars:

• if you send "a", it sends "b"
• if you send "b", it sends "c"
• if you send "z", it sends "{"3

Building the i2c master

Let's start with the easy part. What will master do ? Just collect characters from a serial link, and convert them to i2c
commands. So you'll need a PIC to which you can send data via serial. I mean you'll need a board with serial com.
capabilities. I mean we won't do this on a breadboard... There are plenty out there on the Internet, pick your choice.
If you're interested, you can find one on my SirBot site: dedicated to 16f88, serial com. available, and i2c ready (pull-
ups resistors).

It looks like this:

http://sirbot.org/sirbot-modules/main_board/
http://sirbot.org/

44 | Jallib Tutorials | PIC peripherals

Two connectors are used for earch port, PORTA and PORTB, to plug daughter boards, or a breadboard in our case.

The i2c initialization part is quite straight forward. SCL and SDA pins are declared, we'll use a standard speed,
400KHz:

-- I2C io definition
var volatile bit i2c_scl is pin_b4
var volatile bit i2c_scl_direction is pin_b4_direction
var volatile bit i2c_sda is pin_b1
var volatile bit i2c_sda_direction is pin_b1_direction
-- i2c setup
const word _i2c_bus_speed = 4 ; 400kHz
const bit _i2c_level = true ; i2c levels (not SMB)
include i2c_software
i2c_initialize()

We'll also use the level 1 i2c library. The principle is easy: you declare two buffers, one for receiving and one for
sending bytes, and then you call procedure specifying how many bytes you want to send, and how many are expected
to be returned. Joep has written a nice post about this, if you want to read more about this. We'll send one byte at a
time, and receive one byte at a time, so buffers should be one byte long.

const single_byte_tx_buffer = 1 -- only needed when length is 1
var byte i2c_tx_buffer[1]
var byte i2c_rx_buffer[1]
include i2c_level1

What's next ? Well, master also has to read chars from a serial line. Again, easy:

const usart_hw_serial = true
const serial_hw_baudrate = 57_600
include serial_hardware
serial_hw_init()
-- Tell the world we're ready !
serial_hw_write("!")

http://jallib.blogspot.com/2008/12/i2c-master.html

Jallib Tutorials | PIC peripherals | 45

So when the master is up, it should at least send the "!" char.

Then we need to specify the slave's address. This is a 8-bits long address, the 8th bits being the bit specifying if
operation is a read or write one (see part 1 for more). We then need to collect those chars coming from the PC and
sends them to the slave.

The following should do the trick (believe me, it does :))

var byte icaddress = 0x5C -- slave address

forever loop
 if serial_hw_read(pc_char)
 then
 serial_hw_write(pc_char) -- echo
 -- transmit to slave
 -- we want to send 1 byte, and receive 1 from the slave
 i2c_tx_buffer[0] = pc_char
 var bit _trash = i2c_send_receive(icaddress, 1, 1)
 -- receive buffer should contain our result
 ic_char = i2c_rx_buffer[0]
 serial_hw_write(ic_char)
 end if
end loop

The whole program is available on jallib SVN repository here.

Building the i2c slave

So this is the main part ! As exposed on first post, we're going to implement a finite state machine. jallib comes with
a library where all the logic is already coded, in a ISR. You just have to define what to do for each state encountered
during the program execution. To do this, we'll have to define several callbacks, that is procedures that will be called
on appropriate state.

Before this, we need to setup and initialize our slave. i2c address should exactly be the same as the one defined in
the master section. This time, we won't use interrrupts on Start/Stop signals; we'll just let the SSP module triggers an
interrupts when the i2c address is recognized (no interrupts means address issue, or hardware problems, or...). Finally,
since slave is expected to receive a char, and send char + 1, we need a global variable to store the results. This gives:

include i2c_hw_slave

const byte SLAVE_ADDRESS = 0x5C
i2c_hw_slave_init(SLAVE_ADDRESS)

-- will store what to send back to master
-- so if we get "a", we need to store "a" + 1
var byte data

Before this, let's try to understand how master will talk to the slave (italic) and what the slave should do (underlined),
according to each state (with code following):

• state 1: master initiates a write operation (but does not send data yet). Since no data is sent, slave should just do...
nothing (slave just knows someone wants to send data).

procedure i2c_hw_slave_on_state_1(byte in _trash) is
 pragma inline
 -- _trash is read from master, but it's a dummy data
 -- usually (always ?) ignored
end procedure

• state 2: master actually sends data, that is one character. Slave should get this char, and process it (char + 1) for
further sending.

procedure i2c_hw_slave_on_state_2(byte in rcv) is
 pragma inline
 -- ultimate data processing... :)
 data = rcv + 1

http://code.google.com/p/jallib/source/browse/trunk/sample/16f88_i2c_sw_master_echo.jal

46 | Jallib Tutorials | PIC peripherals

end procedure
• state 3: master initiates a read operation, it wants to get the echo back. Slave should send its processed char.

procedure i2c_hw_slave_on_state_3() is
 pragma inline
 i2c_hw_slave_write_i2c(data)
end procedure

• state 4: master still wants to read some information. This should never occur, since one char is sent and read at a
time. Slave should thus produce an error.

procedure i2c_hw_slave_on_state_4() is
 pragma inline
 -- This shouldn't occur in our i2c echo example
 i2c_hw_slave_on_error()
end procedure

• state 5: master hangs up the connection. Slave should reset its state.

procedure i2c_hw_slave_on_state_5() is
 pragma inline
 data = 0
end procedure

Finally, we need to define a callback in case of error. You could do anything, like resetting the PIC, and sending log/
debug data, etc... In our example, we'll blink forever:

procedure i2c_hw_slave_on_error() is
 pragma inline
 -- Just tell user user something's got wrong
 forever loop
 led = on
 _usec_delay(200000)
 led = off
 _usec_delay(200000)
 end loop
end procedure

Once callbacks are defined, we can include the famous ISR library.

include i2c_hw_slave_isr

So the sequence is:

1. include i2c_hw_slave, and setup your slave
2. define your callbacks,
3. include the ISR

The full code is available from jallib's SVN repository:

• i2c_hw_slave.jal
• i2c_hw_slave_isr.jal
• 16f88_i2c_sw_master_echo.jal
• 16f88_i2c_hw_slave_echo.jal

All those files and other dependencies are also available in last jallib-pack (see jallib downloads)

Connecting and testing the whole thing...

As previously said, the board I use is ready to be used with a serial link. It's also i2c ready, I've put the two pull-ups
resistors. If your board doesn't have those resistors, you'll have to add them on the breadboard, or it won't work (read
part 2 to know and see why...).

I use a connector adapted with a PCB to connect my main board with my breadboard. Connector's wires provide
power supply, 5V-regulated, so no other powered wires it required.

http://code.google.com/p/jallib/source/browse/trunk/include/peripheral/i2c/i2c_hw_slave.jal
http://code.google.com/p/jallib/source/browse/trunk/include/peripheral/i2c/i2c_hw_slave_isr.jal
http://code.google.com/p/jallib/source/browse/trunk/sample/16f88_i2c_sw_master_echo.jal
http://code.google.com/p/jallib/source/browse/trunk/sample/16f88_i2c_hw_slave_echo.jal
http://code.google.com/p/jallib/downloads/list

Jallib Tutorials | PIC peripherals | 47

Connector, with power wires

Everything is ready...

48 | Jallib Tutorials | PIC peripherals

Crime scene: main board, breadboard and battery pack

Once connected, power the whole and use a terminal to test it. When pressing "a", you'll get a "a" as an echo from the
master, then "b" as result from the slave.

What now ?

We've seen how to implement a simple i2c hardware slave. The ISR library provides all the logic about the finite state
machine. You just have to define callbacks, according to your need.

i2c is a widely used protocol. Most of the time, you access i2c devices, acting as a master. We've seen how to be
on the other side, on the slave side. Being on the slave side means you can build modular boards, accessible with a
standard protocol. For instance, I've built a DC motor controller daughter board using this. It's a module, a unit on its
own, just plug, and send/receive data, with just two wires.

And I also plan to build a LCD controller board, but that's for another "Step by Step" post :)4

4 and actually this LCD controller was being built by Jallib guys (Joep, Albert, Richard, Rob), and known as "LCD interface" project. See here for
more.

http://sirbot.org/sirbot-modules/dc-motor-controller-board
http://code.google.com/p/jallib/source/browse/#svn/trunk/project/lcd_interface

Chapter

3
Experimenting external parts

Topics:

• SD Memory Cards
• Hard Disks - IDE/PATA
• Interfacing a Sharp

GP2D02 IR ranger
• Interfacing a HD44780-

compatible LCD display

You now have learned enough and can start to interface your PIC with externals parts.
Without being exhaustive, this chapter explains how to use a PIC with several widely used
parts, like LCD screen.

50 | Jallib Tutorials | Experimenting external parts

Jallib Tutorials | Experimenting external parts | 51

SD Memory Cards

Matthew Schinkel
Jallib Group

In this tutorial we will learn how to use an SD Card for mass data storage.

SD Card Introduction

SD Cards (Secure Digital Cards) are quite popular these days for things like digital camera's, video camera's, mp3
players and mobile phones. Now you will have one in your project! The main advantages are: small size, large data
storage capability, speed, cost. It has flash storage that does not require power to hold data. The current version of the
sd card library that we will be using in this tutorial works with "standard capacity" sd cards up 4gb in size. I hope to
find time to add "high capacity" and "extended capacity" capability to the library.

SD Card have 2 data transfer types "SD Bus" and "SPI Bus". Most PIC's have an SPI port. The "SD Bus" is faster,
however uses more pins. We will be using SPI in our circuit. For more info on SPI visit http://en.wikipedia.org/wiki/
Serial_Peripheral_Interface_Bus. The SPI mode for SD Cards is 1,1.

We are not responsible for your data or SD card. Make sure you have nothing important on your SD card before you
continue.

These SD Cards are 3.3v devices, therefore a 5v to 3v conversion is needed between the PIC and the sd card. We
will use resistors to do the conversion, however there are many other methods. See http://www.microchip.com/3v/ for
more information. Another setup may be needed if you are putting more devices on the same SPI bus.

This circuit will use 16F877 If you are using a different PIC for your project, refer to the PIC's datasheet for pin
output levels/voltage. For example, 18F452 has many pins that are 5v-input that give 3v-output. These pins show
as "TTL / ST" - TTL compatible with CMOS level outputs in the datasheet and they will not require any voltage
conversion resistors. If you are not sure, set a pin as an output, and make it go high then test with a volt meter.

Build a SD Card Slot

Before we can build our circuit, we will need to find ourselves an sd card slot that can plug into our breadboard. You
can find pre-made sd card slots on ebay and other places around the net. It is quite easy to make your own anyways. I
took one out of a broken digital camera and placed it on some blank breadboard and soldered on some pins. Here are
some images of my sd card holder:

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://www.microchip.com/3v/

52 | Jallib Tutorials | Experimenting external parts

Build the circuit

Follow this schematic for 16f877, if you are using another PIC, check the pin-outs for the SPI bus. The pin-outs of
your pic will show SDI, SDO, SCL and SS. The pin SS is the chip select pin, you can use any pin for it but the others
must match.

Jallib Tutorials | Experimenting external parts | 53

54 | Jallib Tutorials | Experimenting external parts

Compile and write the software to your PIC

With the use of the sd card lib (sd_card.jal) and a sample file 16f877_sd_card.jal, we can easily put one in our own
circuit for mass data storage! You will find these files in the lib & sample directories of your jallib installation.

The most up to date version of the sample & library can be found at:

Sample file - http://jallib.googlecode.com/svn/trunk/sample/16f877_sd_card.jal

Library file - http://jallib.googlecode.com/svn/trunk/include/external/storage/sd_card/sd_card.jal

Now that our circuit is built, lets test it and make sure it works before we continue with more details. Compile and
program your pic with 16f877_sd_card.jal from your jallib samples directory. If you are using another pic, change the
"include 16f877" line in 16f877_sd_card.jal to specify your PIC before compiling.

Now that you have compiled it, burn the .hex file to your PIC

Power It Up

Plug your circuit into your PC for serial port communication at 38400 baud rate. Now turn it on. Press the reset button
in your circuit, you should get a result similar to this:

ASCII output

Hex output

http://jallib.googlecode.com/svn/trunk/sample/16f877_sd_card.jal
http://jallib.googlecode.com/svn/trunk/include/external/storage/sd_card/sd_card.jal

Jallib Tutorials | Experimenting external parts | 55

As you can see from the first image, we got some actual readable data off the sd card as well as a bunch of junk. The
sample file reads the first sector (512 bytes) from the sd card. My sd card is formated with fat32, this is why I can
read some of the data output.

In the second image (after clearing the output and resetting the circuit), there was too much data to show it all. It
only shows the last bytes received. If you get the same hex output "66 22" followed by many "00", your circuit has
successfully written data and read it back again. You now have a working sd card circuit!

Understand and modify the code

I'm just going to quickly go over some of the key points you need to know about sd cards. Open the sample file with
an editor if you have not done so already.

The code in the sample file may change, therefore it may be different then what you see here. The sample file you
have downloaded will always be tested and correct.

Include the chip

Specify the PIC you wish to use as well as your clock frequency

include 16f877
--
pragma target OSC HS -- HS crystal or resonator
pragma target clock 20_000_000 -- oscillator frequency
--
pragma target WDT disabled
pragma target LVP disabled

Disable Analog Pins

enable_digital_io() -- disable all analog pins if any

56 | Jallib Tutorials | Experimenting external parts

Include other libraries required

-- include the delay library
include delay

Setup serial communication and port speed

-- setup uart for communication
const serial_hw_baudrate = 38400 -- set the baudrate
include serial_hardware
serial_hw_init()

SPI Settings

Here you may change the chip select pin "pin_SS" and "pin_SS_direction" to another pin. SDI, SDO and SCK must
stay the same for the SPI hardware library.

You may notice that we are not defining/aliasing pins sdi, sdo and sck. We do not need to define them with a line
like "alias pin_sdo is pin_c5" becase they are set within the PIC and cannot be changed. If we use the SPI hardware
library, we must use the spi hardware pins. We only need to define there direction like this "pin_sdo_direction =
output".

You may also choose the SPI rate. According to the SPI hardware library, you can use SPI_RATE_FOSC_4
SPI_RATE_FOSC_16, SPI_RATE_FOSC_64 or SPI_RATE_TMR. The fastest is FOSC_4 (oscillator frequency / 4).
You may require a breadboard for the fastest speed, keep your SD Card as close to the PIC as possible.

-- setup spi
include spi_master_hw -- includes the spi library
-- define spi inputs/outputs
pin_sdi_direction = input -- spi input
pin_sdo_direction = output -- spi output
pin_sck_direction = output -- spi clock
-- spi chip select pin
ALIAS sd_chip_select_direction is pin_SS_direction
ALIAS sd_chip_select is pin_SS
sd_chip_select_direction = output -- chip select/slave select pin
sd_chip_select = high -- disable the sd card
--
spi_init(SPI_MODE_11,SPI_RATE_FOSC_16) -- choose spi mode and speed

Include the SD card library

Select sd card settings & Include the library file, then initalize the sd card.

Some sd cards may require a 10ms delay every time you stop writing to the sd card, you can choose weater
or not to have this delay. If you are doing many small writes and are worried about speed, you may set
SD_DELAY_AFTER_WRITE to "FALSE".

-- setup sd card library
const bit SD_DELAY_AFTER_WRITE = TRUE
include sd_card -- include sd card library
sd_init() -- initalize the sd card

Read the first sector from the SD card

Reading is easy, there are 3 procedures within the library that MUST be used.

sd_start_read(0) - start reading at specified sector (sector 0)

sd_read_data(byte1, byte2) - actually read data from the card (2 bytes at a time)

sd_stop_read() - stop the read process

You can also use the sd_read_pulse(number) procedure to skip past data. For every 1 value added, there will be 2
bytes skipped since this procedure simply reads data and ignores the input.

Jallib Tutorials | Experimenting external parts | 57

If you have more then one SPI device on the SPI bus, do not interrupt or switch devices until the complete read
process has finished with sd_stop_read, do not allow the chip select pin to go high.

_usec_delay(100_000) -- wait for power to settle
var byte low_byte, high_byte -- vars for sending and recieving data

-- read the boot sector (sector 0)
sd_start_read(0) -- get sd card ready for read at sector
 0
for 256 loop -- read 1 sector (256 words)
 sd_read_data (low_byte, high_byte) -- read 2 bytes of data
 serial_hw_write (low_byte) -- send byte via serial port
 serial_hw_write (high_byte) -- send byte via serial port
end loop
sd_stop_read() -- tell sd card you are done reading

Write some data to your sd card

Writing is also easy, there are 3 procedures within the library that MUST be used.

sd_start_write(20) - start writing at specified sector (sector 20)

sd_read_data(byte1, byte2) - write to the card (2 bytes at a time)

sd_stop_write() - stop the read process

When writing to your SD card, you MUST write 512 bytes at a time. In this example, we are writing (256x2) = 512
bytes + (128x2) = 256 bytes for a total of 768 bytes. This means we have written one sector (512 bytes), as well as
half of a sector (265 bytes). The half of a sector(256 bytes) that we have written, will not actually be written to the sd
card until we finish the sector with data.

For this reason, you will need to use the sd_write_to_sector_end(value) procedure. This procedure will automatically
finish the sector for you with the "value" data specified. In our case we are writing 0x00 till the end of the 512 bytes
(end of the sector).

Just as we noted with reading data, you may not interrupt the SPI port until you have completed the write process
with the sd_stop_write procedure.

Please note that we are writing to sector 20

-- write (0x66, 0x22) to sector 20 over and over.
low_byte = 0x66 -- set low byte to write
high_byte = 0x22 -- set high byte to write

sd_start_write(20) -- get sd card ready for write
for 256 + 128 loop -- write 1 sector + 1/2 sector
 sd_write_data(low_byte, high_byte) -- write data to the card
end loop
sd_write_to_sector_end(0x00) -- 2nd sector is not done, so finish it
 -- sectors must be completed during
 write

sd_stop_write() -- tell sd card you are done writing

Read back the data we have written

Now read 2 sectors (1024 bytes) from sector 20 (where we had previously written data). You will get 512 + 256 bytes
of 0x66 & 0x22 as well as 256 bytes of 0x00's

-- read the data back, should get (0x66, 0x22) over and over.
sd_start_read(20) -- get sd card ready for read at sector
 20
for 512 loop -- read 2 sectors (512 words)
 sd_read_data (low_byte, high_byte) -- read 2 bytes of data
 serial_hw_write (low_byte) -- send byte via serial port

58 | Jallib Tutorials | Experimenting external parts

 serial_hw_write (high_byte) -- send byte via serial port
end loop
sd_stop_read() -- tell sd card you are done reading

Now you can put whatever you want on your SD card, or possibly read lost data off of it.

If you want to read files stored on the card by your PC, there wil soon be a FAT32 library and tutorial so you can
easily browse, read and write to files and folders stored on your card.

What are you waiting for, go build something cool!

Jallib Tutorials | Experimenting external parts | 59

Hard Disks - IDE/PATA

Matthew Schinkel
Jallib Group

IDE Paralel ATA hard disk drive tutorial

Introduction to hard disks drives

If your are like me, you have too many old hard disks laying around. I have gathered quite a collection of drives from
PC's I have had in the past. Now you can dust off your drives and put them in your circuit. I have extra drives ranging
in size from 171MB to 120GB.

Before you start, make sure you use a drive you do not care about. We are not responsible for your drive of the data
that is on it.

You can find more general info at http://en.wikipedia.org/wiki/Parallel_ATA, and you can find more detailed
technical info at http://www.gaby.de/gide/IDE-TCJ.txt

Drive Types - PATA vs SATA

There are two types of hard disks PATA (parallel ata) and SATA (serial ata). In this tutorial we will use PATA, these
drives use a 40 pin IDE connector. The newer type of drive SATA has only 7 pins but there is no Jallib library for
these drives at the moment. Both types of hard disks are available with massive amounts of data space.

http://en.wikipedia.org/wiki/Parallel_ATA
http://www.gaby.de/gide/IDE-TCJ.txt

60 | Jallib Tutorials | Experimenting external parts

Drive Data Size

The current jallib library will accept drives up to 128GB. The 128GB limit is due to and addressing limitation, this
is the 28 bit addressing limitation.The max address you will be able to reach is hex 0xFFFFFFF. If you multiply this
address by 512 bytes (1 sector) you get a max size of 137,438,952,960 bytes, yes this does equal 128GB. Eventually I
may upgrade the library for 48bit addressing which will allow up to a max drive size hex 0xFFFFFFFFFFFF * 512 =
128P Petabytes. But now that I think about it, 128 GB should be enough!

Actual Size

The most common drive sizes today are 3.5" and 2.5". The 3.5 inch drives are commonly used in desktop computers,
2.5" drives are used in laptops. The 2.5" drives are nice for your circuit because they do not require a 12v supply
voltage, and they use much less power.

If you wish to use a 2.5" laptop hard drive, you may need a 2.5" to 3.5" IDE adapter like this one:

Jallib Tutorials | Experimenting external parts | 61

Build a breadboard connector

Now, if your going to put one of these into your circuit, you'll need to plug the drive into your breadboard. I took a
40pin IDE connector off an old motherboard. The easiest way to get large components of a board is to use a heat gun
on the bottom side of the board to melt the solder on all pins at once.

Now take this connector and stick it into some blank breadboard and add some pins. The blank breadboard I cut is 4
holes wide by 20 long. Put the connector in the middle and connect the pins on the outside, join each pin with each
pin of the connector.

Of course you will also need a 40pin IDE cable, I like the ones with the notch so you don't plug it in backwards.
Here's the one I made:

Circuit Power

It is very important that you have enough power to drive your circuit. Hard drives need a lot of amps to run,
especially the 3.5" drives, so make sure you have a decent 5v and 12v power supply. I suggest that you DO NOT use
your PC's power supply to drive your circuit. You can easily short circuit your power supply and blow up your PC.
If you really insist on doing this, you better put a fuse on both 5v and 12v between your PC and your circuit. Just
remember that I told you not to!

IDE Connector Pin-out

Pin 1 on the IDE cable is the red stripe. Here the pin out for the male connector I took off a motherboard:

PIN FUNCTION PIN FUNCTION

1 /RESET 2 GND

3 D7 4 D8

5 D6 6 D9

7 D5 8 D10

62 | Jallib Tutorials | Experimenting external parts

PIN FUNCTION PIN FUNCTION

9 D4 10 D11

11 D3 12 D12

13 D2 14 D13

15 D1 16 D14

17 D0 18 D15

19 GND 20 NO PIN

21 22 GND

23 /IOWR - READ Pin 24 GND

25 /IORD - Write Pin 26 GND

27 28 ALE - 1K resistor to
5v

29 30 GND

31 32

33 A1 34

35 A0 36 A2

37 /CS0 (to 5v) 38 /CS1 (to GND)

39 ACT - BUSY LED 40 GND

Build the circuit

Build the circuit below. As you can see it is quite simple. As you can see, it only requires 3 resistors, a led and a
bunch of wire. You can put a reset button on the IDE connector if you like, but I have found no use for it so I connect
it direct to 5v.

Jallib Tutorials | Experimenting external parts | 63

Here's what the completed circuit should look like (don't turn on the power yet):

64 | Jallib Tutorials | Experimenting external parts

Jallib Tutorials | Experimenting external parts | 65

Compile and write the software to your PIC

The hard disk lib (pata_hard_disk.jal) and a sample file (16f877_pata_hard_disk.jal) will be needed for this project.
You will find these files in the lib & sample directories of your jallib installation.

The most up to date version of the sample & library can be found at:

Sample file - http://jallib.googlecode.com/svn/trunk/sample/16f877_pata_hard_disk.jal

Library file - http://jallib.googlecode.com/svn/trunk/include/external/storage/harddisk/pata_hard_disk.jal

Now lets test it and make sure it works. Compile and program your pic with 16f877_sd_card.jal from your jallib
samples directory. If you are using another pic, change the "include 16f877" line in 16f877_sd_card.jal to specify
your PIC before compiling.

Now that you have compiled it, burn the .hex file to your PIC with your programmer

Power It Up

Plug your circuit into your PC for serial port communication at 38400 baud rate. Now turn it on. It should do the
following in this order:

1. Drive will power up with the led on, after power up the led will go off.
2. The led will blink once quickly and the drive will "spin down".
3. The led will turn on while the drive now "spins up"
4. The led will blink once quickly and the drive will "spin down" again.
5. The led will turn on while the drive now "spins up" again.
6. The led will turn on and off a few times and send some data to your PC's serial port.
7. The PIC now "spin down" the drive at the end of the program.

ASCII output

Hex output

http://jallib.googlecode.com/svn/trunk/sample/16f877_pata_hard_disk.jal
http://jallib.googlecode.com/svn/trunk/include/external/storage/harddisk/pata_hard_disk.jal

66 | Jallib Tutorials | Experimenting external parts

In the first image, If your disk is formatted with fat32 you may be able to see some readable data as well as some
junk. There is too much data for me to show it all in the image, on my drive formatted with fat32 I can read "Invalid
partition t ableError loading operating system..."

In the second image (after clearing the output and resetting the circuit), there was too much data to show it all again.
It only shows the last bytes received. If you get the same hex output "CC DD" followed by many "FF", your circuit
has successfully written data and read it back again. You now have a working hard disk circuit!

Understand and modify the code

I will go over some of the key points you need to know about hard disk coding. Open the sample file with an editor if
you have not done so already. The code in the sample file may change, therefore it may be different then what you see
here. The sample file you have downloaded will always be tested and correct.

Include the chip

Select the PIC you wish to use and your clock frequency

-- include chip
include 16f877 -- target picmicro
;include 16f877a -- target picmicro

-- this program assumes a 20 mhz resonator or crystal
-- is connected to pins osc1 and osc2.
pragma target osc hs -- hs crystal or resonator
pragma target clock 20_000_000 -- oscillator frequency
--
pragma target wdt disabled
pragma target lvp disabled
--

Jallib Tutorials | Experimenting external parts | 67

Disable all analog pins

enable_digital_io() -- disable all analog pins if any

Include required libraries

include delay -- include the delay library

Setup serial port and choose baud rate 38400

-- setup uart for communication
const serial_hw_baudrate = 38400 -- set the baudrate
include serial_hardware
serial_hw_init()

Setup the hard disk library constants/settings

The registers Alternate Status, Digital Output, and Drive Address registers will only be used by advanced users, so
keep the default PATA_HD_USE_CS0_CS1_PINS = FALSE

The pins /iowr, /iord, /cs0, /cs1 are active low pins that are supposed to require an inverter. If you leave
PATA_HD_NO_INVERTER = TRUE, the PIC will do the inversion for you. You will most likely want to keep the
default "TRUE".

-- setup hard disk library

-- set true if you will use Alternate Status,
-- Digital Output or Drive Address registers
const byte PATA_HD_USE_CS0_CS1_PINS = FALSE

-- if true, an external inverter chip is not
-- needed on /iowr, /iord, /cs0, /cs1 pins
const bit PATA_HD_NO_INVERTER = TRUE

Setup pin assignments

Yes, pata hard disks have a lot of pins. You will need two full 8pin port's (port B and port D of 16F877) for data
transfer, three register select pins, one read pulse pin and one write pulse pin. A total of 19 io pins. I am able to
commented out cs1/cs0 and save pins because of the constant we set.

-- pin assignments
var volatile byte pata_hd_data_low is portb -- data port
 (low bits)
alias pata_hd_data_low_direction is portb_direction
alias pata_hd_data_high is portd -- data port (high bits)
alias pata_hd_data_high_direction is portd_direction

alias pata_hd_a0 is pin_a0
alias pata_hd_a0_direction is pin_a0_direction
alias pata_hd_a1 is pin_a1
alias pata_hd_a1_direction is pin_a1_direction
alias pata_hd_a2 is pin_a2
alias pata_hd_a2_direction is pin_a2_direction

alias pata_hd_iowr is pin_c2
alias pata_hd_iowr_direction is pin_c2_direction
alias pata_hd_iord is pin_c1
alias pata_hd_iord_direction is pin_c1_direction

alias pata_hd_cs1 is pin_a3
alias pata_hd_cs1_direction is pin_a3_direction
alias pata_hd_cs0 is pin_a4
alias pata_hd_cs0_direction is pin_a4_direction

pata_hd_a0_direction = output -- register select pin
pata_hd_a1_direction = output -- register select pin

68 | Jallib Tutorials | Experimenting external parts

pata_hd_a2_direction = output -- register select pin

pata_hd_iowr_direction = output -- used for write pulse
pata_hd_iord_direction = output -- used for read pulse

;pata_hd_cs1_direction = output -- register select pin
;pata_hd_cs0_direction = output -- register select pin

Now include the library

include pata_hard_disk -- include the parallel ata ide hard disk
 library
pata_hd_init() -- initialize startup settings

Add user's procedure and variables

Hard disks send data 2 bytes at a time since there are two 8 pin data ports, so I made a small serial port procedure to
send 2 bytes via the serial port:

-- Function for sending hard disk data via serial
-- port, data is read 2 bytes at a time.
procedure send_word(byte in lowbit, byte in highbit) is
serial_hw_write(lowbit) -- send 1st serial data byte
serial_hw_write(highbit) -- send 2nd serial data byte
end procedure

Now declare variables for recieved data

-- Declare variables for this example.
var byte in_a
var byte in_b

Wait for power to stabilize then send "START" to the serial port to notify the user (YOU) that the program has started
ok

_usec_delay (1_000_000) -- wait for power to stabilize

-- send "start" to pc / test uart communication
send_word("S", "T")
send_word("A", "R")
send_word("T", 0x20)
send_word(13, 10)
send_word(13, 10)

Spin Up/Spin Down test

It is important to know if we have some basic communication to the drive. We will try to spin up (turn on the drive's
motor) and spin down (turn off the drive's motor). This will simply send the "spin up" command to the command
register then "spin down", then it will do the same once more. This shows that we have communication from your
PIC to the hard drive.

for 2 loop
 pata_hd_register_write(PATA_HD_COMMAND_REG,PATA_HD_SPIN_UP) -- turn on
 motor
 _usec_delay(5_000_000) -- 5 sec delay
 pata_hd_register_write(PATA_HD_COMMAND_REG,PATA_HD_SPIN_DOWN) -- turn off
 motor
 _usec_delay(5_000_000) -- 5 sec delay
end loop

pata_hd_register_write(PATA_HD_COMMAND_REG,PATA_HD_SPIN_UP) -- turn on
 motor

Wait 10 seconds before next example

_usec_delay(10_000_000) -- wait 10 seconds before next example

Jallib Tutorials | Experimenting external parts | 69

Read the first and second sector from the hard drive

Now that we know we are able to write to the registers, we can try to read some data. One sector is 512 bytes. Since
data is transfered 2 bytes at a time, we will loop 256 times to read one full sector while sending the data via serial
port.

Reading is easy, there are 3 procedures within the library that MUST be used. You will notice this process is similar
to the SD card tutorial.

pata_hd_start_read(0) - start reading at specified sector (sector 0)

pata_hd_read_data(byte1, byte2) - actually read data from the card (2 bytes at a time)

pata_hd_stop_read() - stop the read process

You can also use the pata_hd_read_pulse(number) procedure to skip past data. For every 1 value added, there will be
2 bytes skipped since this procedure simply reads data and ignores the input.

-- Read one sector
for 256 loop -- 256 words, 512 bytes per sector
 pata_hd_read_data(in_b, in_a) -- read data
 send_word(in_b, in_a) -- send data via serial port
end loop

-- You will see hard disk LED on during this delay
-- because you did not finnish reading.
_usec_delay(2_000_000) -- 2 second delay

-- Read 2nd sector.
for 256 loop -- 256 words, 512 bytes per sector
 pata_hd_read_data (in_b, in_a) -- read data
 send_word(in_b, in_a) -- send data via serial port
end loop

pata_hd_stop_read() -- tell drive you are done reading
-- hard disk led will turn off at this point.

_usec_delay(10_000_000) -- wait 10 seconds before next example

Identify drive command

The identify drive command loads 512 bytes of data for you that contains information about your drive. You can
retrieve info like drive serial number, model number, drive size, number of cylinders, heads, sectors per track and a
bunch of other data required by your PC. Of course you can read more info on this at the links I have given you.

On the sticker of some older drives, you will see "CYL", "HEADS", "SEC/T" (this can also be found with the Identify
command). You can calculate drive's addressable sectors with (cylinders * heads * sectors per track), and multipy that
by 512) for the size of the drive.

On newer drives, you will see on the front sticker the number of LBA's, this is the number of addressable sectors.
If you multiply this value by 512, you will get the size of the drive in bytes. For example, one of my drive says
60058656 LBA's. With this drive, you can send a pata_start_read command with a addresses from 0 to (60058656 -
1). The size of this drive is 60058656 * 512 = 30GB

Let's try it out, first we send the command:

-- send the identify drive command
pata_hd_register_write(PATA_HD_COMMAND_REG,PATA_HD_IDENTIFY_DRIVE)

Now we must wait till the drive is ready and has data for us:

-- check if drive is ready reading and set data ports as inputs
-- this MUST be used before reading since we did not use pata_hd_start_read
pata_hd_data_request(PATA_HD_WAIT_READ)

70 | Jallib Tutorials | Experimenting external parts

The drive is now has data for us, so let's read it. Notice that the input data bytes (in_b & in_a) are backwards for
identify drive (don't ask me why).

-- Read 512 bytes
for 256 loop -- 256 words, 512 bytes per sector
 pata_hd_read_data(in_b, in_a) -- read data
 send_word(in_a, in_b) -- send data via serial port
end loop -- drive info high/low bytes are in reverse
 order

Wait 10 seconds before the next example

_usec_delay(10_000_000) -- wait 10 seconds before next example

Write data to the drive

Just like reading, there are 3 procedures that MUST be used.

pata_hd_start_write(20) - start writing at specified sector (sector 20)

pata_hd_read_data(byte1, byte2) - write to the card (2 bytes at a time)

pata_hd_stop_write() - stop the read process

When writing to your hard drive, you MUST write 512 bytes at a time. In this example, we are writing (256x2) = 512
bytes + (250x2) = 500 bytes for a total of 1012 bytes. This means we have written one sector (512 bytes), as well as
500 bytes of the next sector. The second sector (500 bytes) that we have written, will not actually be written to the
hard drive until we finish the sector with data.

For this reason, you will need to use the pata_hd_write_to_sector_end(value) procedure. This procedure will
automatically finish the sector for you with the "value" data specified. In our case we are writing 0xFF till the end of
the 512 bytes (end of the sector).

Here's an example write, Please note that we are starting to write at sector 200

pata_hd_start_write(200) -- tell hd to get ready for reading

-- now write 1 sector + most of 2nd sector, data will not
-- be written unless 512 bytes are sent
for 256 + 250 loop
 pata_hd_write_data(0xCC, 0xDD) -- write data 0xCC, 0xDD over and over
end loop
-- first sector has been written to the disk since 512 bytes where sent,
-- but 2nd sector is not finnished, only 500 bytes sent,
-- so lets finnish the sector with 6 more write pulses (0xFF's as data)
pata_hd_write_to_sector_end(0xFF)

pata_hd_stop_write() -- tell hd we are done writing

Now read back the data the 1012 bytes have been written

-- Now read the 1st sector you just wrote, should get
-- 0xCC, 0xDD over and over
pata_hd_start_read(200) -- get drive ready for reading
for 256 + 250 loop -- read 512 bytes + 500 bytes
 pata_hd_read_data(in_b, in_a) -- read data
 send_word(in_b, in_a) -- send data via serial port
end loop

-- if you want, you can read back the last 6 bytes that are 0xFF
for 6 loop
 pata_hd_read_data(in_b, in_a) -- read data
 send_word(in_b, in_a) -- send data via serial port
end loop

pata_hd_stop_read() -- tell drive we are done reading

Jallib Tutorials | Experimenting external parts | 71

If you want, you can turn off the hard drive motor at the end of the program

-- We're done, lets turn off the hd motor
pata_hd_register_write(PATA_HD_COMMAND_REG,PATA_HD_SPIN_DOWN)

Your Done!

That's it, Now you can read & write to all those hard drives you have laying around. You can read raw data from
drives and possibly even get back some lost data.

Alright, go build that hard disk thingy you where dreaming about!

72 | Jallib Tutorials | Experimenting external parts

Interfacing a Sharp GP2D02 IR ranger

Sébastien Lelong
Jallib Group

Sharp IR rangers are widely used out there. There are many different references, depending on the beam pattern, the
minimal and maximal distance you want to be able to get, etc... The way you got results also make a difference: either
analog (you'll get a voltage proportional to the distance), or digital (you'll directly get a digital value). This nice
article will explain these details (and now I know GP2D02 seems to be discontinued...)

Overview of GP2D02 IR ranger

GP2D02 IR ranger is able to measure distances between approx. 10cm and 1m. Results are available as digital values
you can access through a dedicated protocol. One pin, Vin, will be used to act on the ranger. Another pin, Vout, will
be read to determine the distance. Basically, getting a distance involves the following:

1. First you wake up the ranger and tell it to perform a distance measure
2. Then, for each bit, you read Vout in order to reconstitute the whole byte, that is, the distance
3. finally, you switch off the ranger

The following timing chart taken from the datasheet will explain this better.

Figure 4: GD2D02 IR ranger : timing chart

Note: the distances obtained from the ranger aren't linear, you'll need some computation to make them
so.

Sharp GP2D02 IR ranger looks like this:

Jallib Tutorials | Experimenting external parts | 73

• Red wire is for +5V
• Black wire ground
• Green wire is for Vin pin, used to control the sensor
• Yellow wire is for Vout pin, from which 8-bits results read

(make a mental note of this...)

Interfacing the Sharp GP2D02 IR ranger

Interfacing such a sensor is quite straight forward. The only critical point is Vin ranger pin can't handle high logic
level of the PIC's output, this level mustn't exceed 3.3 volts. A zener diode can be used to limit this level.

Note: be careful while connecting this diode. Don't forget it, and don't put it in the wrong side. You may
damage your sensor. And I'm not responsible for ! You've been warned... That's said, I already forgot it,
put it in the wrong side, and thought I'd killed my GP2D02, but this one always got back to life. Anyway,
be cautious !

Here's the whole schematic. The goal here is to collect data from the sensor, and light up a LED, more or less
according to the read distance. That's why we'll use a LED driven by PWM.

74 | Jallib Tutorials | Experimenting external parts

Figure 5: Interfacing Sharp GP2D02 IR range : schematic

Here's the ranger with the diode soldered on the green wire (which is Vin pin, using your previously created mental
note...):

I've also added thermoplastic rubber tubes, to cleanly join all the wires:

Jallib Tutorials | Experimenting external parts | 75

Finally, in order to easily plug/unplug the sensor, I've soldered nice polarized connectors:

76 | Jallib Tutorials | Experimenting external parts

Writing the program

jallib >=0.3 contains a library, ir_ranger_gp2d02.jal, used to handle this kind of rangers. The setup is quite straight
forward: just declare your Vin and Vout pins, and pass them to the gp2d02_read_pins(). This function returns
the distance as a raw value. Directly passing pins allows you to have multiple rangers of this type (many robots have
many of them arranged in the front and back sides, to detect and avoid obstacles).

Using PWM libs, we can easily make our LED more or less bright. In the mean time, we'll also transmit the results
through a serial link.

var volatile bit gp2d02_vin is pin_a4
var volatile bit gp2d02_vout is pin_a6
var bit gp2d02_vin_direction is pin_a4_direction
var bit gp2d02_vout_direction is pin_a6_direction
include ir_ranger_gp2d02
-- set pin direction (careful: "vin" is the GP2D02 pin's name,
-- it's an input for GP2D02, but an output for PIC !)
gp2d02_vin_direction = output
gp2d02_vout_direction = input

var byte measure
forever loop
 -- read distance from ranger num. 0
 measure = gp2d02_read_pins(gp2d02_vin,gp2d02_vout)
 -- results via serial
 serial_hw_write(measure)
 -- now blink more or less
 pwm1_set_dutycycle(measure)
end loop

Note: I could directly pass pin_A4 and pin_A6, but to avoid confusion, I prefer using aliases.

A sample, 16f88_ir_ranger_gp2d02.jal, is available in jallib SVN repositoryjallib released packages, and also in ,
starting from version 0.3. You can access downloads here.

Building the whole on a breadboard

Building the whole on a breadboard

http://code.google.com/p/jallib/source/browse/trunk/include/external/ranger/ir/ir_ranger_gp2d02.jal
http://code.google.com/p/jallib/source/browse/trunk/sample/16f88_ir_ranger_gp2d02.jal
http://code.google.com/p/jallib/source/browse/trunk/include/external/ranger/ir/ir_ranger_gp2d02.jal
http://code.google.com/p/jallib/downloads/list

Jallib Tutorials | Experimenting external parts | 77

I usually power two tracks on the side, used for the PIC and for the ranger:

78 | Jallib Tutorials | Experimenting external parts

Using the same previously created mental note, I connected the yellow Vout pin using a yellow wire, and the green
Vin pin using a green wire...

Testing (and the video)

Time to test this nice circuit ! Power the whole, and check no smoke is coming from the PIC or (and) the ranger. Now
get an object, like you hand, more or less closed to the ranger and observe the LED, or the serial output... Sweet !

http://www.youtube.com/watch?v=l5AZwv7LzyM

http://www.youtube.com/watch?v=l5AZwv7LzyM

Jallib Tutorials | Experimenting external parts | 79

Interfacing a HD44780-compatible LCD display

Sébastien Lelong
Jallib Group

In this "Step by Step" tutorial, we're going to (hopefully) have some fun with a LCD display. Particularly one
compatible with HD44780 specifications, which seems to be most widely used.

Setting up the hardware

As usual, there are plenty resources on the web. I found this one quite nice, covering lots of thing. Basically, LCDs
can be accessed with two distinct interfaces: 4-bit or 8-bit interfaces. 4-bit interface requires less pins (4 pins), but
is somewhat slow, 8-bit interface requires more pins (8 pins) but is faster. jallib comes with the two flavors, it's up
to you deciding which is most important, but usually, pins are more precious than speed, particularly when using a
16F88 which only has 16 I/O pins (at best). Since 4-bit interface seems to be most used, and we'll use this one here...

So, I've never used LCD, to be honest. Most guys consider it as an absolute minimum thing to have, since it can help
a lot when debugging, by printing messages. I tend to use serial for this... Anyway, I've been given a LCD, so I can't
resist anymore :)

The LCD I have seems to be quite a nice beast ! It has 4 lines, is 20 characters long.

Looking closer, "JHD 204A" seems to be the reference. Near the connector, only a "1" and a "16". No pin's name.

http://www.google.com/search?hl=en&q=lcd+hd44780
http://home.iae.nl/users/pouweha/lcd/lcd.shtml

80 | Jallib Tutorials | Experimenting external parts

Googling the whole points to a forum, and at least a link to the datasheet. A section describes the "Pin Assignement".
Now I'm sure about how to connect this LCD.

http://www.8051projects.net/e107_files/public/1231066792_13674_FT0_jm204aspec.pdf

Jallib Tutorials | Experimenting external parts | 81

For this tutorial, we're going to keep it simple:

• as previously said, we'll use 4-bit interface. This means we'll use DB4, DB5, DB6 and DB7 pins (respectively pin
11, 12, 13 and 14).

• we won't read from LCD, so R/W pin must be grounded (pin 5)
• we won't use contrast as well, V5 pin (or Vee) must be grounded (pin 3)

Including pins for power, we'll use 10 pins out of the 16 available, 6 being connected to the PIC (RS, EN and 4 data
lines).

For convenience, I soldered a male connector on the LCD. This will help when building the whole on a breadboard.

So we now have everything to build the circuit. Here's the schematic. It also includes a LED, it will help us checking
everything is ok while powering up the board.

82 | Jallib Tutorials | Experimenting external parts

Using a breadboard, it looks like this:

Jallib Tutorials | Experimenting external parts | 83

84 | Jallib Tutorials | Experimenting external parts

Jallib Tutorials | Experimenting external parts | 85

Writing the software

For this tutorial, we'll use one of the available samples from jallib repository. I took one for 16f88, and adapt it to my
board (specifically, I wanted to use PORTA when connecting the LCD, and let PORTB's pins as is).

As usual, writing a program with jallib starts with configuring and declaring some parameters. So we first have to
declare which pins will be connected:

 -- LCD IO definition
var bit lcd_rs is pin_a6 -- LCD command/data select.
var bit lcd_rs_direction is pin_a6_direction
var bit lcd_en is pin_a7 -- LCD data trigger
var bit lcd_en_direction is pin_a7_direction

var byte lcd_dataport is porta_low -- LCD data port
var byte lcd_dataport_direction is porta_low_direction

-- set direction
lcd_rs_direction = output
lcd_en_direction = output
lcd_dataport_direction = output

This is, pin by pin, the translation of the schematics. Maybe except porta_low. This represents pin A0 to A3, that
is pins for our 4 lines interface. porta_high represents pin A4 to A7, and porta reprensents the whole port, A0 to
A7. These are just "shorcuts".

We also have to declare the LCD geometry:

const byte LCD_ROWS = 4 -- 4 lines
const byte LCD_CHARS = 20 -- 20 chars per line

Once declared, we can then include the library and initialize it:

include lcd_hd44780_4 -- LCD library with 4 data lines

http://code.google.com/p/jallib/source/browse/
http://code.google.com/p/jallib/source/browse/trunk/sample/16f88_lcd_hd44780_4.jal

86 | Jallib Tutorials | Experimenting external parts

lcd_init() -- initialize LCD

For this example, we'll also use the print.jal library, which provides nice helpers when printing variables.

include print

Now the main part... How to write things on the LCD.

• You can either use a procedure call: lcd_write_char("a")
• or you can use the pseudo-variable : lcd = "a"
• lcd_cursor_position(x,y) will set the cursor position. x is the line, y is the row, starting from 0
• finally, lcd_clear_screen() will, well... clear the screen !

Full API documentation is available on jalapi.

So, for this example, we'll write some chars on each line, and print an increasing (and incredible) counter:

const byte str1[] = "Hello world!" -- define strings
const byte str2[] = "third line"
const byte str3[] = "fourth line"

print_string(lcd, str1) -- show hello world!
lcd_cursor_position(2,0) -- to 3rd line
print_string(lcd, str2)
lcd_cursor_position(3,0) -- to 4th line
print_string(lcd, str3)

var byte counter = 0

forever loop -- loop forever

 counter = counter + 1 -- update counter
 lcd_cursor_position(1,0) -- second line
 print_byte_hex(lcd, counter) -- output in hex format
 delay_100ms(3) -- wait a little

 if counter == 255 then -- counter wrap
 lcd_cursor_position(1,1) -- 2nd line, 2nd char
 lcd = " " -- clear 2nd char
 lcd = " " -- clear 3rd char
 end if

end loop

The full and ready-to-compile code is available on jallib repository:

• blog_16f88_sl_lcd_hd44780_4.jal

You'll need last jallib-pack, available on jallib's download section.

How does this look when running ?

Here's the video !

http://www.youtube.com/watch?v=hIVMuaz8OS8

http://jallib.googlecode.com/svn/trunk/doc/html/lcd_hd44780_4.html
http://jallib.googlecode.com/svn/trunk/doc/html/index.html
http://code.google.com/p/jallib/source/browse/trunk/doc/dita/tutorials/code/blog_16f88_sl_lcd_hd44780_4.jal
http://code.google.com/p/jallib/downloads/list
http://www.youtube.com/watch?v=hIVMuaz8OS8

License

We, Jallib Group, want this book to be as open and free as possible. We decided to release it under Creative Common
Attribution-Noncommercial-Share Alike 3.0 license.

Basically (and repeating what's on Creative Common website), you are free:

• to Share - to copy, distribute, and transmit the work
• to Remix - to adapt the work

Under the following conditions:

• Attribution - You must attribute the work in the manner specified by the author or licensor (but not in any way
that suggests that they endorse you or your use of the work).

• Noncommercial - You may not use this work for commercial purposes.
• Share Alike - If you alter, transform, or build upon this work, you may distribute the resulting work only under

the same, similar or a compatible license.

Full license lecal code can be read at: http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode

This license applies to the book content itself, not on codes, libraries, examples, etc... you may find, or when
it's explicitely stated work is released under another license. For instance, most work on Jallib is released under
BSD and ZLIB license, not under this Creative Common license. In doubt, please ask on Jallib Group (http://
groups.google.com/group/jallib)

http://groups.google.com/group/jallib
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode
http://groups.google.com/group/jallib
http://groups.google.com/group/jallib

88 | Jallib Tutorials | License

Appendix

90 | Jallib Tutorials | Appendix

Materials, tools and other additional how-tos

Jallib Tutorials | Appendix | 91

Building a max232 circuit for serial port communication

Matthew Schinkel
Jallib Group

In this tutorial, we're going to build a serial port that can connect your PIC's TX and RX pins to your pc or other
hardware using a max232 chip.

Many circuits will require some serial port communication, you may buy yourself a rs232 to TTL adapter off the net
for as little as $10, or you can build one yourself. The max232 is a very popular chip. It converts your 5v circuit to the
12v required for serial communication to things like your PC. Many microcontrollers have RX and TX output pins.
Here is a image of the max232 adapter I purchased. It has input pins for RX, TX, CT, RT as well as GND and 5v. The
RX and TX pins can be directly connected to your PIC.

Now, lets build our own!

First get yourself a RS232 port, you can cut up one of your serial port cords, or buy a port from the store for a dollar
or two.

I am going to use a cut serial port cord since it already has leads on it, and is long enough to reach my pc. Use your
multi-meter to find the pin numbers, and touch up the wires with solder so they’ll go into your breadboard easily.

Now build the circuit, As you can see, you will need the max232 chip from your local electronics store and a few 1uf
capacitors.

92 | Jallib Tutorials | Appendix

Great job, now connect the RX and TX pins to your circuit, and plug the rs232 port directly your pc, or to a usb-to-
serial adapter, or even to a bluetooth-to-serial adapter for short range wireless.

I strongly suggest you make this on a PCB with pins that will plug to your breadboard. you’ll use it a lot!

Jallib Tutorials | Appendix | 93

You can use serial_hardware lib or serial_software lib to transmit data to your pc, check for it in the other jallib
projects. I suggest the software realterm for sending/receiving data to your PIC

Open Source REALTERM http://realterm.sourceforge.net/

It can be downloaded for free from http://sourceforge.net/projects/realterm/files/

Open the software, click “Port”, choose your speed and port number and press “open”

Hex output

94 | Jallib Tutorials | Appendix

Ascii output

Jallib Tutorials | Appendix | 95

In Circuit Programming

Matthew Schinkel
Jallib Group

Intro to in-circuit programming & ICSP

What is ICSP?

ICSP stands for In-Circuit Serial Programming. More information can be found at http://ww1.microchip.com/
downloads/en/DeviceDoc/30277d.pdf

Benefits of ICSP

1. You may program your PIC while it is in your breadboard circuit
2. You may program your PIC while it is on a soldered circuit board
3. You will save time programming so you can write more code faster
4. You can reset your circuit from your PC
5. You can program surface mount PIC's that are on soldered circuit board
6. You won't bend or break any pins
7. You won't damage your PIC by placing it in your breadboard wrong
8. With a remote desktop software like VNC, you can program your PIC from anywhere around the world.
9. I can program my PIC in my livingroom on my laptop while I watch tv with my wife! (I keep my mess in my

office)

Intro to ICSP & in-circuit programming

When I got started in micro-controllers and JAL, I needed to choose a programmer. At the time, I did not know
anything about choosing a programmer, so I just went on ebay and bought one that is able to program many different
PIC's.

For years, I used this programmer by putting my 16f877 chip into it, programming it, and putting it into my
circuit. I broke pins and wasted a lot of time. Little did I know, my programmer has an ICSP output for in-circuit
programming. My programmer even says ICSP on it, but I did not know what ICSP is.

Eventually I got sick and tired of moving my micro-controller back and forth from the breadboard to the programmer,
and I had herd some talk about ICSP. I found a ICSP circuit on the net, and I took a harder look at my programmer,
it has 6 pins sticking up labeled ICSP. However, I did not know what pin was what, they where not marked well, and
I could not find info about my programmer. One of the pins was marked pin 1 on the programmer. If you know your
ICSP pinouts already, you may skip to the circuit diagram.

I searched for 6-pin ICSP in Google with no results, mostly I found 5 pin circuits. So, I took out my volt-meter and
logic probe (and oscilloscope, although it is not needed) and measured the voltages off each pin while programming a
chip and while not. I could see on the breadboard that pin 6 is connected to ground. Here's what I got:

PIN # While Idle While Programming

1 0v 12v

2 0v 0v

3 5v Pulsing 0v to 5v (random)

3 0v Pulsing 0v to 5v (square wave)

4 0v 5v

5 0v 0v

http://ww1.microchip.com/downloads/en/DeviceDoc/30277d.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/30277d.pdf

96 | Jallib Tutorials | Appendix

Get the pin names

The pin names for ICSP are VPP1, LOW, DATA, CLK, VCC, GND. So lets match them up:

0v pin 2 must be pin “GND”, I think this one is actually not connected

0v pin 6 must be pin “GND”

pin 1 & 5 seem to be programming enable pins, VPP1 and VCC

The two pulsing pins must be “CLK” and “DATA” (you may have to guess which is which if you don't have a
oscilloscope.

Lets make a new chart. I believe most ICSP ports have pins in this order:

PIN # PIN NAME While idle While
Programming

1 VPP1 0v 12v

2 Not Connected 0v 0v

3 DATA 5v Pulsing 0v to 5v
(random)

4 CLK 0v Pulsing 0v to 5v
(square wave)

5 VCC 0v 5v

6 GND 0v 0v

Build a circuit with ICSP

VCC can be connected to your PIC’s 5v supply for power-off programming. It does not work on my circuit because
there is too much current drain. Do not connect both VCC directly to your power supply since there may be a voltage
difference. In my circuit, I will not use the VCC pin, and I will program my chips while my circuit power supply is
ON

GND must be connected to your circuits ground. Follow this circuit diagram:

Jallib Tutorials | Appendix | 97

You will also need to connect your PIC's power and ground pins to your power supply with the 5v power supply on.

Your done! Try to program your chip!

98 | Jallib Tutorials | Appendix

Changelog

Jallib Group
Jallib Group

Table 1: Version history

Version Date Comments

0.1 2009/11/22

0.2 2009/12/06 Added SD-Card, PATA hard-disks and ICSP tutorials

	Contents
	Back to basics...
	TODO: Introduction
	Installation
	Getting Started
	Blink A Led (Your First Project)
	Setting up a serial link (UART) -- TODO

	PIC peripherals
	Pulse Width Modulation (PWM)
	Having fun with PWM and a LED (part 1)
	Having fun with PWM and a piezo buzzer (or a speaker) (part 2)

	Analog-to-Digital Converter (ADC) -- TODO
	I²C
	Building an i2c slave with jallib (part 1)
	Building an i2c slave with jallib (part 2)
	Building an i2c slave with jallib (part 3)

	Experimenting external parts
	SD Memory Cards
	Hard Disks - IDE/PATA
	Interfacing a Sharp GP2D02 IR ranger
	Interfacing a HD44780-compatible LCD display

	License
	Appendix
	Materials, tools and other additional how-tos
	Building a max232 circuit for serial port communication
	In Circuit Programming

	Changelog

